exterior

In mathematics, specifically in topology,
the interior of a subset S of a topological space X is the union of all subsets of S that are open in X.
A point that is in the interior of S is an interior point of S.
The interior of S is the complement of the closure of the complement of S.
In this sense interior and closure are dual notions.
The exterior of a set S is the complement of the closure of S; it consists of the points that are in neither the set nor its boundary.
The interior, boundary, and exterior of a subset together partition the whole space into three blocks (or fewer when one or more of these is empty).
The interior and exterior of a closed curve are a slightly different concept; see the Jordan curve theorem.

View More On Wikipedia.org
  1. J

    Body Has anyone rino lined the exterior of their cj

    Was wondering is anyone has ever rhinolined or something similar to the exterior of their jeep? If so how was the outcome, Did you spray or roll it? Any info would be appreciated.
Back
Top Bottom